
hhhh

Introduction

This guide is for use with the Cache 5.0 Studio.

The guide shows you how to define a Caché class mapped to an existing Caché Global. It includes a set of general instructions together with an example.

The example, written in italics, defines a class abc mapped to

the global ^abc

keyed by the properties abc1 and abc2

whose data contains the properties abc3 and abc4.

Properties are defined with datatype %String to avoid unnecessary complexity.

There are three types of Caché Class Storage:-

%CacheStorage

%CacheSQLStorage

%CustomStorage

%CacheStorage is the default storage. It does not require user configuration and provides little user control of the underlying global structure.

%CacheSQLStorage is the user configurable storage which can be defined using the instructions in this guide. Before defining %CacheSQLStorage storage, you MUST have access to FULL documentation on the global's structure.

%CustomStorage allows the definition of user written methods replacing those in the %Persistent superclass. Although providing the most flexibility, you have to develop your own ‘standard’ storage facilities and SQL access access code.

Startup Studio

· Right Click Caché Cube, [image: image1.png]

, in Windows Task Bar

· Left Click 'Studio'

Create a Persistent Class

· Using the ‘Project Window’ (Alt+3 if not visible)

· Right Click the word 'Classes'

· Left Click ‘Create New Class’

· Enter required package name in ‘Enter a package name’ box

e.g. enter the package name User

· Enter required class name in ‘Enter a class name’ box

e.g. enter the class name abc

· Left Click ‘Next’ button

· Left Click ‘Persistent’ radio button

· Left Click ‘Finish’ button

Add Properties to the Class

· Left Click ‘New Property’ button, [image: image2.png]

, in the ‘Members’ Toolbar

· Enter required name for the new property

e.g. enter the property name abc1
· Left Click ‘Finish’ button

· repeat steps in this section to add further properties.

e.g. enter the property names abc2, abc3 and abc4
Specify the ‘Row Identifier’ Properties

· Left Click ‘New Index’ button, [image: image3.png]o

, in the ‘Members’ Toolbar

· Enter required name for the new index

e.g. enter the index name abcIndex
· Left Click ‘Next’ button

· Left Click ‘This is the IDKEY for this Class’ check box

· Left Click ‘This is the SQL Primary key for this Class’ check box

· Left Click ‘Next’ button

· Left Click the ‘Add’ button, [image: image4.png]

, in the ‘Index Properties’ window

· Enter required property name in the ‘Property’ box

e.g. specify the property name abc1
· Left Click OK

· repeat ‘Add’ steps to specify further properties.

e.g. specify the property name abc2
· Left Click ‘Finish’ button

This section specifies the properties which, together, uniquely identify a single row.

In order to specify properties as global subscripts in a ‘data’ storage map, you MUST have specified them in this section. This is described later in this guide.

Create a New Storage Definition

· Left Click ‘New Storage’ button, [image: image5.png]

, in Members Toolbar

· Enter required name for the new storage definition

e.g. enter the storage definition name abcStorage
· Left Click ‘Cache SQL Storage’ radio button

· Left Click ‘Finish’ button

· Using the ‘Inspector’ (Alt+1 if not visible) check that the class is using the newly created storage definition (ie StorageStrategy) :-

[image: image6.png]Name Userabe
Absiract Fake
ClassType persistent

etc …

[image: image7.png]StorageStrategy abcStorage
Super ZParsitent
ViewQuery

Create a New Master Map

· Using the ‘Inspector’ (Alt+1 if not visible) list the storage definitions

[image: image8.png]Bl

Storage | [[umman) &

aboStorage #CacheS0LStorage

· Double Left Click the relevant storage definition’s name to reveal :-

[image: image9.png]rr

Storage <] [abeStorage &

Name [abcStorage

etc …

[image: image10.png]|| SQL storage map

· Left Click ‘SQL storage map’

· Left Click the [image: image11.png]

 button

· Left Click the ‘Add’ button in the storage definition wizard

· Enter required map name in ‘Map name’ box

e.g. enter the Map name abcMap

· Enter required global name in ‘Global name’ box

e.g. enter the Global name ^abc

· Select data in the ‘Map type’ box

· Select $Piece in the ‘Node structure’ box

· Left Click OK

Specify the Master Map's Subscripts

· If you have just followed the steps in previous section, Left Click the [image: image12.png]

 button. Otherwise, using the ‘Inspector’ (Alt+1 if not visible) display the storage definition wizard as described in the previous section

In the left pane of the storage definition wizard

· Left Click the + next to the storage name (e.g. abcStorage)

· Left Click the + next to the map name (e.g. abcMap)

· Left Click the word ‘Subscripts’

· Left Click the ‘Add’ button

· Left Click down arrow to the right of the Expression column

· Left Click the required expression

e.g. select the expression {abc1}

· repeat ‘Add’ steps to specify further expressions.

e.g. select the expression {abc2}

· Left Click OK

The {} syntax within an expression indicates a property name. If you add too many subscripts, Right Click the unwanted subscript line and Left Click the ‘Delete’ button.

Each of the specified properties MUST have been specified in the "Specify the ‘Row Identifier’ Properties" section.

Specify the Master Map's Data

· If you have just followed the steps in previous section, Left Click the [image: image13.png]

 button. Otherwise, using the ‘Inspector’ (Alt+1 if not visible) display the storage definition wizard as described in the previous section

In the left pane of the storage definition wizard (when + displayed)

· Left Click the + next to the storage name (e.g. abcStorage)

· Left Click the + next to the map name (e.g. abcMap)

· Left Click the word ‘Data’

· Left Click the ‘Add’ button

· Left Click down arrow to the right of the Field column

· Left Click the required field name

e.g. select the field name {abc3}
· Left Click the newly added line under the ‘Node’, ‘Piece’ or ‘Delimeter’ columns to add/amend the data’s storage definition. A blank ‘Node’ value indicates that the data is held in the global node specified by the subscript storage definition. Otherwise, the ‘Node’ value specifies a sub-node of the global node specified by the subscript storage definition.

· repeat ‘Add’ steps to specify further field names.

e.g. select the field name {abc4}
· Left Click OK

This procedure must be repeated until every property listed in the Class is defined as a subscript or data.

If you add too many data items, Right Click the unwanted data line and Left Click the ‘Delete’ button.

Specify the Master Map's Row ID’s

This section is not mandatory. In most cases the RowID can be automatically deduced from the Subscript details. However, it is possible to define a subscript as a combination of two or more properties. In this case the reverse (ie RowID) definition is required to deduce the property values from a given subscript value.

The following steps are not normally required ...

· If you have just followed the steps in previous section, Left Click the [image: image14.png]

 button. Otherwise, using the ‘Inspector’ (Alt+1 if not visible) display the storage definition wizard as described in a previous section

In the left pane of the storage definition wizard (when + displayed)

· Left Click the + next to the storage name (e.g. abcStorage)

· Left Click the + next to the map name (e.g. abcMap)

· Left Click the phrase ‘Row ID’

· Left Click the ‘Add’ button

· Left Click down arrow to the right of the Field column

· Left Click the required field name

e.g. select the field name {abc1}
· Left Click the newly added line under the ‘Expression’ column to specify how the field’s value is obtained. The expressions {L1}, {L2}, {L3}, etc indicate the values of the level 1 key, the level 2 key, the level 3 key, etc.

e.g. the expression for {abc1} would be {L1}. As explained above, this example does not need Row ID definitions since they can be deduced from the subscript definitions.
· repeat ‘Add’ steps to specify further field names.

e.g. select the field name {abc2} with an expression of {L2}. As explained above, this example does not need Row ID definitions since they can be deduced from the subscript definitions.
· Left Click OK

This procedure is not mandatory. However, if you have defined Row IDs then you must include every property specified in the "Specify the ‘Row Identifier’ Properties" section. You should only include properties previously defined as subscripts in this map.

If you add too many Row ID items, Right Click the unwanted Row ID line and Left Click the ‘Delete’ button.

Create a New Index Map (Optional)

· If you have just followed the steps in previous section, Left Click the [image: image15.png]

 button. Otherwise, using the ‘Inspector’ (Alt+1 if not visible) display the storage definition wizard as described in a previous section

· Left Click the ‘Add’ button in the storage definition wizard

· Enter required map name in ‘Map name’ box

e.g. enter the Map name abcIndexMap1

· Enter required global name in ‘Global name’ box

e.g. enter the Global name ^abci

· Select index in the ‘Map type’ box

· Select $Piece in the ‘Node structure’ box

· Left Click OK

Specify the Index Map's Subscripts (Optional)

· If you have just followed the steps in previous section, Left Click the [image: image16.png]

 button. Otherwise, using the ‘Inspector’ (Alt+1 if not visible) display the storage definition wizard as described in a previous section

In the left pane of the storage definition wizard

· Left Click the + next to the storage name (e.g. abcStorage)

· Left Click the + next to the map name (e.g. abcIndexMap1)

· Left Click the word ‘Subscripts’

· Left Click the ‘Add’ button

· Left Click down arrow to the right of the Expression column

· Left Click the required expression

e.g. select the expression {abc3}

· repeat ‘Add’ steps to specify further expressions.

e.g. select the expression {abc1} and then {abc2}
· Left Click OK

The {} syntax within an expression indicates a property name.

The fields defined as subscripts must contain ALL of the properties specified in the "Specify the ‘Row Identifier’ Properties" section. In other words, each row in the index map must be able to identify the corresponding row in the data map.

Specify Collating Sequence of the Index Map's Subscripts

%CacheStorage defines the data and index storage automatically.

%CacheSQLStorage requires the manual definition of each index map. The new index wizard is only required to define the IDKEY index which lists the properties that uniquely identify a row. All other indices are ignored by %CacheSQLStorage.

Having defined an index map, following the previous sections' instructions, you must modify the indexed property's collation to EXACT.

When %CacheStorage is used, the index map is created automatically. The property's collation is used to determine the index's collating sequence. The default property collation is SQLUPPER. This creates an index global holding the property's value converted to uppercase with a space on front.

When %CacheSQLStorage is used, the index map must be defined manually. The index's collation is implicitly defined by the definition of the index's subscript. For example, defining the first subscript as {abc3} creates an index global holding the property's value exactly as held within the data global. This is EXACT collating sequence.

As the default collation of a property is SQLUPPER, it does not match the implicitly defined collation of the index. Consequently, the index would not be used.

To resolve this issue you must modify the collation of the indexed properties to EXACT. Using the Studio’s editor window, modify %String in the relevant Property definition to %String(COLLATION = "EXACT")

e.g. modify the line :-

Property abc3 As %String;
to :-

Property abc3 As %String(COLLATION = "EXACT");
Alternatively (rather than changing the COLLATION of the property's definition),

In the left pane of the storage definition wizard

· Left Click the + next to the storage name (e.g. abcStorage)

· Left Click the + next to the map name (e.g. abcIndexMap1)

· Left Click the + next to the word ‘Subscripts’

· Left Click the property name (e.g. {abc3})

· Change {abc3} to $$SQLUPPER({abc3})

· Left Click OK

This will create an index with the value of abc3 converted to SQLUPPER.

This is of no use if the index global is being created by existing application code.

Compile the new Class

· Left Click the Compile button, , or press <CTRL> and <F7> together.

Test the new Class

· Right Click Caché Cube, [image: image17.png]

, in Windows Task Bar

· Left Click Terminal

· Enter zn "XXX" where XXX is required namespace

· Open Object, assign values to properties, Save Object & Close Object

e.g. to test the class abc, enter the following:-
XXX> Set a=##class(User.abc).%New()
XXX> Set a.abc1="one"
XXX> Set a.abc2="two"
XXX> Set a.abc3="three"
XXX> Set a.abc4="four"
XXX> Write a.%Save()

1

XXX> Write a.%Close()

1
XXX> D ^%G
Device: <RETURN> Right margin: 80=> <RETURN>
Global ^abc
^abc("one","two")=three^four

Global ^abci
^abci("three","one","two")=

or (if you specified $$SQLUPPER({abc3} in the index map's 1st subscript)

^abci(" THREE","one","two")=

Global ^<RETURN>
XXX> Halt
where XXX represents the namespace's name.

Studio Editor definition for Example Class

Class User.abc Extends %Persistent [ClassType = persistent, ProcedureBlock, StorageStrategy = abcStorage]

{

Property abc1 As %String;

Property abc2 As %String;

Property abc3 As %String(COLLATION = "EXACT");

Property abc4 As %String;

Index abcIndex On (abc1, abc2) [IdKey, PrimaryKey, Unique];

}

 Left Click View in the menu bar and then Left Click View Storage to see the following :-

<Storage name="abcStorage">

 <SQLMap name="abcIndexMap1">

 <ConditionalWithHostVars></ConditionalWithHostVars>

 <Global>^abci</Global>

 <Structure>delimited</Structure>

 <Subscript name="1">

 <Expression>{abc3}</Expression>

 </Subscript>

 <Subscript name="2">

 <Expression>{abc1}</Expression>

 </Subscript>

 <Subscript name="3">

 <Expression>{abc2}</Expression>

 </Subscript>

 <Type>index</Type>

 </SQLMap>

 <SQLMap name="abcMap">

 <ConditionalWithHostVars></ConditionalWithHostVars>

 <Data name="abc3">

 <Delimiter>"^"</Delimiter>

 <Piece>1</Piece>

 </Data>

 <Data name="abc4">

 <Delimiter>"^"</Delimiter>

 <Piece>2</Piece>

 </Data>

 <Global>^abc</Global>

 <Structure>delimited</Structure>

 <Subscript name="1">

 <Expression>{abc1}</Expression>

 </Subscript>

 <Subscript name="2">

 <Expression>{abc2}</Expression>

 </Subscript>

 <Type>data</Type>

 </SQLMap>

 <Type>%CacheSQLStorage</Type>

</Storage>

}

%CacheSQLStorage
- 14 -
using Caché 5 Studio

